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Abstract
In our development of the Roc programming language, we
have found that structural subtyping (a-la TypeScript,CDuce)
is a model that many developers are able to intuit and be
productive in. However, Hindley-Milner-style type systems
based on unification have numerous benefits too - they read-
ily admit principal type inference, and ease the effort of
implementing a monomorphizing compiler for a program
when unification induces type equality. Systems like ML-
Sub [1] and Simple-sub [2] demonstrate that principal type
inference can be recovered in such systems extended with
subtyping, though their support for subtyping constructs is
limited. Recently, it has been shown that a form of subtyping
can be encoded via Rank-1 parametric polymorphism, but
that no record subtyping can be encoded as row polymor-
phism [3]. We would like to discuss what opportunities we
have as designers and implementers of type systems to emu-
late subtyping to a great degree in HM-style type systems,
both faithfully and only partially.

We will discuss to what extent row and variant polymor-
phism can aid these goals. To what extent can other tricks,
like implicit unbound type variables in positive (output) po-
sitions, help us emulate the feel of subtyping in a structural
HM-style type system? What opportunities do we have to
implement type systems that feature subtyping, and automat-
ically translate them to an HM-based system? What are the
implications on error messages and diagnostic suggestions
that can be provided to users in both kinds of systems?
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