
Can a type system emulate the ergonomics of
structural subtyping while being unification based?

Ayaz Hafiz
ayaz.hafiz.1@gmail.com

Abstract
In our development of the Roc programming language, we
have found that structural subtyping (a-la TypeScript,CDuce)
is a model that many developers are able to intuit and be
productive in. However, Hindley-Milner-style type systems
based on unification have numerous benefits too - they read-
ily admit principal type inference, and ease the effort of
implementing a monomorphizing compiler for a program
when unification induces type equality. Systems like ML-
Sub [1] and Simple-sub [2] demonstrate that principal type
inference can be recovered in such systems extended with
subtyping, though their support for subtyping constructs is
limited. Recently, it has been shown that a form of subtyping
can be encoded via Rank-1 parametric polymorphism, but
that no record subtyping can be encoded as row polymor-
phism [3]. We would like to discuss what opportunities we
have as designers and implementers of type systems to emu-
late subtyping to a great degree in HM-style type systems,
both faithfully and only partially.

We will discuss to what extent row and variant polymor-
phism can aid these goals. To what extent can other tricks,
like implicit unbound type variables in positive (output) po-
sitions, help us emulate the feel of subtyping in a structural
HM-style type system? What opportunities do we have to
implement type systems that feature subtyping, and automat-
ically translate them to an HM-based system? What are the
implications on error messages and diagnostic suggestions
that can be provided to users in both kinds of systems?

ACM Reference Format:
Ayaz Hafiz. 2024. Can a type system emulate the ergonomics of
structural subtyping while being unification based?. In Proceedings
of Workshop on the Implementation of Type Systems (Conference
acronym ’XX). ACM, New York, NY, USA, 1 page. https://doi.org/
XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference acronym ’XX, January 20, 2024, London, United Kingdom
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

References
[1] Stephen Dolan and Alan Mycroft. 2017. Polymorphism, Subtyping,

and Type Inference in MLsub. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France)
(POPL ’17). Association for Computing Machinery, New York, NY, USA,
60–72. https://doi.org/10.1145/3009837.3009882

[2] Lionel Parreaux. 2020. The Simple Essence of Algebraic Subtyping:
Principal Type Inference with Subtyping Made Easy (Functional Pearl).
Proc. ACM Program. Lang. 4, ICFP, Article 124 (aug 2020), 28 pages.
https://doi.org/10.1145/3409006

[3] Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Or-
nela Dardha, Rongxiao Fu, and Sam Lindley. 2023. Structural Subtyping
as Parametric Polymorphism. Proc. ACM Program. Lang. 7, OOPSLA2,
Article 260 (oct 2023), 29 pages. https://doi.org/10.1145/3622836

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/10.1145/3009837.3009882
https://doi.org/10.1145/3409006
https://doi.org/10.1145/3622836

	Abstract
	References

